
A tutorial on clonal ordering and visualization
using ClonEvol

Ha X. Dang
Last updated: 2017-08-18

Contents

What is ClonEvol? 3

Installation 4

Clonal evolution analysis workflow 5

Step 1: Preparing variants for clonal evolution inference 5

Step 2: Clustering variants 5

Step 3: Evaluating the variant clustering results 6
Loading ClonEvol and AML1 clustering data . 6
Preparing clustering data . 7
Choosing colors for the clones . 7
Visualizing the variant clusters . 7
Plotting pairwise VAFs or CCFs across samples 8
Plotting mean/median of clusters across samples (cluster flow) 9

Step 4: Clonal ordering with ClonEvol 9
Inferring clonal evolution trees . 9
Mapping driver events onto the trees . 10
Converting node-based trees to branch-based trees 11
Where are trees stored? . 11

1

Step 5: Visualizing the results 11
Plotting multiple plots and trees together . 11
Plotting trees . 13
Visualizing trees predicted by other tools . 13
How to obtain the best visualizations? . 14

Step 6: Interpretating the results 16
Clonal mixture of individual samples . 16
ClonEvol’s trees . 16
Clonal seedings between samples . 16

Session Info 17

References 17

2

What is ClonEvol?

ClonEvol is a package for clonal ordering and clonal evolution visualization. It uses the
clustering of heterozygous variants identified using other tools as input to infer consensus
clonal evolution trees and estimate the cancer cell fraction (also called clonal frequency) of
the clones in individual samples. ClonEvol can deal with statistical uncertainty and error in
sequencing and data analysis that may distort the cellular prevalence estimate of individual
variants.

Figure 1: Overview of ClonEvol. ClonEvol infers and visualizes clonal evolution trees using
variants preclustered by other methods. It can also visualizes trees identified by other
methods.

ClonEvol uses a bootstrap resampling approach to estimate the cancer cell fraction (CCF)
of the clones (ie. clonal frequency), given the CCF of the variants and their clusters, via the
following equation (referred to as the sum rule).

CCF (clone Y) = CCF (cluster Y) −
∑

Xi∈all direct subclones ofY

CCF (cluster Xi)

This results in a bootstrap estimate of the sampling distribution of the CCF of clone Y
(given its direct subclones Xi) that can be subsequently used to estimate: (i) the confidence
interval for the CCF of clone Y ; and (ii) the probability that the CCF of clone Y is negative
(or non-negative).
A negative CCF estimate for a clone Y indicates that the sum rule is violated by the ordering
that all clones {Xi} are arisen directly from clone Y in a clonal evolution model. A negative

3

CCF estimate could also be resulted from the statistical uncertainty and errors (mentioned
above) present in the cellular prevalence and clustering of variants as input to ClonEvol.
Hence, the sum rule is only considered violated in ClonEvol if the confidence interval of the
CCF of a clone is heavily shifted toward negative value, meaning the probability of negative
CCF is high (or the probability that the CCF is non-negative is low).
ClonEvol evaluates the clonal ordering for all parental clones in all potential trees. A tree is
reported if none of its clone violates the sum rule as described above.
ClonEvol can produce multiple visualizations (Figure 1), including:

1. Bell plots to present clonal dynamics over time (building upon the Fishplot (Ding et al.
2012))

2. Sphere of cells to present clonal subpopulations of a sample
3. Annotated node-based and branch-based trees to present clonal relationships and

seeding patterns between samples.

ClonEvol is maintained at https://github.com/hdng/clonevol.

Installation

R requirements
ClonEvol requires R 2.15 or later. It has been tested with R versions: 2.15, 3.0.2, 3.2.1, 3.2.3,
3.3.3, 3.4.0 on MacOS and Linux.
Install from Github

install.packages('devtools')
library(devtools)
install_github('hdng/clonevol')
install.packages('gridBase')
install.packages('gridExtra')
install.packages('ggplot2')
install.packages('igraph')
install.packages('packcircles')
install_github('hdng/trees')

Install from Bioconductor
Currently unavailable

4

https://github.com/hdng/clonevol

Clonal evolution analysis workflow

A typical analysis workflow for clonal evolution inference using sequencing data involves the
following steps:

1. Preparing a comprehensive and reliable set of somatic mutations
2. Clustering the mutations based on cellular prevalence
3. Evaluating the clustering results
4. Inferring clonal evolution trees (ie. clonal ordering)
5. Visualizing data and clonal evolution trees
6. Interpreting the results

ClonEvol provides tools for steps 3-6 (see Figure 1). Steps 1-2 should be done prior to running
ClonEvol, using other tools (briefly described below).

Step 1: Preparing variants for clonal evolution inference

The depth of sequencing, the quantity and quality of samples, and the quantity and quality
of somatic variants can have a profound impact on the resulting clonal evolution models. In
an ideal situation, we want:

1. Large number of samples
2. Large number of variants (exome sequencing is okay, but whole genome sequencing

provides much better coverage of passenger somatic mutations)
3. Multiple time points
4. Multi-region samples (due to intra-tumor heterogeneity)
5. Deep sequencing, eg. targeted validation

This does not mean that we cannot study clonal evolution in cancer without such an ideal
dataset. However, be prepared that in highly heterogeneous patients/tumors, your data may
yield models that underestimate the true model.

Step 2: Clustering variants

Clustering the variants based on their cellular prevalence across samples is a critical step.
The purpose of clustering variants is to identify the clones. Due to tumor heterogeneity, the
cellular prevalence of distinct clones may be present at different frequencies between samples
(eg. sample A has 90% clone X and 10% clone Y while sample B has 50% clone X, 50% clone
Y). Therefore, the clonal marker variants of a clone will show similar cellular prevalence

5

across samples and will likely be clustered together. The end product of a variant clustering
tool is the clusters, each of them consists of the clonal marker variants of a distinct clone.
Cellular prevalence of variants used in the clustering algorithm is often measured by the
variant allele frequency (V AF), calculated as the ratio of the number of reads carrying the
variant and the total number of reads at the site. The assumption for the clustering algorithm
to work is that V AF provides a good estimate of the cellular fraction of a variant, ie. the
fraction of cells carrying the variant. In the case with diploid heterozygous variants (copy
number neutral), the cancer cell fraction (CCF) of a variant can be calculated as twice of
its V AF . However, copy number variation is common in cancers, further deviating their
V AF , and hence CCF , from actual cellular prevalence if left uncorrected. Both diploid
heterozygous and copy-altered variants can be used to feed the clustering algorithms. If only
diploid heterozygous variants are used, clustering can be performed using sciClone (Miller et
al. 2014) and V AF can be used in ClonEvol. If copy-altered variants are used, clustering
should be performed by copy number aware tools such as Pyclone (Roth et al. 2014). In the
latter case, copy number corrected cellular prevalence estimate provided by the clustering
tool is prefered to be used in ClonEvol, especially when there is bias between gain and loss
events.

Step 3: Evaluating the variant clustering results

Since each cluster represents a clone, missing or incorrectly infer a cluster could hinder us
from successful construction of the evolution models. Therefore, it is extremely important
to obtain a good clustering result. ClonEvol provides a convenient visualization of variant
clusters across multiple samples to help evaluate clustering results, particularly when no tree
is inferred.
Assume that we already have a clustering result consisting of the cluster identity and the
cellular prevalence estimate for individual variants. This can be stored as a tabular text
file and read into a data frame using read.table function. Here we use data of a relapsed
myeloid leukemia case (AML1) (Ding et al. 2012) available with ClonEvol. This is a simple
case with two samples (a primary and a relapse) sequenced using whole genome and deep
targeted validation.

Loading ClonEvol and AML1 clustering data

library(clonevol)
data(aml1)
x <- aml1$variants

6

Preparing clustering data

The clustering result as output from other tools may not be convienient for ClonEvol analysis
and visualization. ClonEvol requires an input data frame consisting of at least a cluster
column and one or more variant cellular prevalence columns, each corresponds to a sample.
The cluster should be named by contiguous integer numbers, starting from 1. For better
visualization, the names of the cellular prevalence columns should be short.

shorten vaf column names as they will be
vaf.col.names <- grep('.vaf', colnames(x), value=T)
sample.names <- gsub('.vaf', '', vaf.col.names)
x[, sample.names] <- x[, vaf.col.names]
vaf.col.names <- sample.names

prepare sample grouping
sample.groups <- c('P', 'R');
names(sample.groups) <- vaf.col.names

setup the order of clusters to display in various plots (later)
x <- x[order(x$cluster),]

Choosing colors for the clones

ClonEvol has built-in colors designed to distinguish ~20 different clones. However, users can
also specify their own colors. To set up the colors for the clusters/clones that will be used
throughout the visualizations, create a vector of colors as follow. In this case, we chose colors
matching the original figure in Ding et al (2012).

clone.colors <- c('#999793', '#8d4891', '#f8e356', '#fe9536', '#d7352e')

If you want ClonEvol to choose colors for you, simply set it to NULL, like this.

clone.colors <- NULL

Visualizing the variant clusters

The following code will plot the clustering results for you to investigate. It will plot the
cellular prevalence (CCF or V AF) of the variants across clusters and samples, using jitter,
box, and violin plots to allow close investigation of the clustering. This plot is very powerful
as it can visualize lots of samples and clusters at once.

7

pdf('box.pdf', width = 3, height = 3, useDingbats = FALSE, title='')
pp <- plot.variant.clusters(x,

cluster.col.name = 'cluster',
show.cluster.size = FALSE,
cluster.size.text.color = 'blue',
vaf.col.names = vaf.col.names,
vaf.limits = 70,
sample.title.size = 20,
violin = FALSE,
box = FALSE,
jitter = TRUE,
jitter.shape = 1,
jitter.color = clone.colors,
jitter.size = 3,
jitter.alpha = 1,
jitter.center.method = 'median',
jitter.center.size = 1,
jitter.center.color = 'darkgray',
jitter.center.display.value = 'none',
highlight = 'is.driver',
highlight.shape = 21,
highlight.color = 'blue',
highlight.fill.color = 'green',
highlight.note.col.name = 'gene',
highlight.note.size = 2,
order.by.total.vaf = FALSE)

dev.off()

This should generate the jitter plot shown in Figure 2 of variants’ VAF.
When evaluating the clusters, look for potential outlier clusters (eg. ones with small number
of variants), potential merged clusters (eg. ones that have variants with V AF stretching from
zero to non-zero values in multiple samples, that can be further splitted into multiple clusters),
noise clusters (eg. ones that show very similar and low V AF across samples, indicating false
variant calls). These conditions could be more relaxed with deeper sequencing as clustering
can be more accurate. For AML1 case, several small clusters exists (as shown in Figure 2)
but ultra-deep sequencing makes them interpretable.

Plotting pairwise VAFs or CCFs across samples

If you need to inspect variant clusters across pairs of samples, the following command is
useful for pairwise plot of V AF or CCF .

8

Figure 2: Visualization of multiple clusters across mutiple samples

plot.pairwise(x, col.names = vaf.col.names,
out.prefix = 'variants.pairwise.plot',
colors = clone.colors)

Plotting mean/median of clusters across samples (cluster flow)

pdf('flow.pdf', width=3, height=3, useDingbats=FALSE, title='')
plot.cluster.flow(x, vaf.col.names = vaf.col.names,

sample.names = c('Primary', 'Relapse'),
colors = clone.colors)

dev.off()

Step 4: Clonal ordering with ClonEvol

Inferring clonal evolution trees

At this step, we assume that you already thouroughly looked at your clustering and feel
confident about it. Let’s tell ClonEvol to perform clonal ordering and construct the consensus
trees. In this example AML1 case, we will use V AF of variants. If your data contain
copy-altered variants and copy number corrected CCF estimated by the clustering tool (eg.
Pyclone), you can provide the corrected CCF to ClonEvol via ccf.col.names parameter in
infer.clonal.models function, or calculate the equivalent copy number corrected V AF as
half of the CCF .

9

y = infer.clonal.models(variants = x,
cluster.col.name = 'cluster',
vaf.col.names = vaf.col.names,
sample.groups = sample.groups,
cancer.initiation.model='monoclonal',
subclonal.test = 'bootstrap',
subclonal.test.model = 'non-parametric',
num.boots = 1000,
founding.cluster = 1,
cluster.center = 'mean',
ignore.clusters = NULL,
clone.colors = clone.colors,
min.cluster.vaf = 0.01,
min probability that CCF(clone) is non-negative
sum.p = 0.05,
alpha level in confidence interval estimate for CCF(clone)
alpha = 0.05)

The infer.clonal.models function takes the clustering results and evaluates all clonal orderings
to reconstruct the clonal evolution trees and estimate the CCF of the clones in individual
samples. Several important parameters are:

• variants: the variant clustering data frame
• cluster.col.name: name of cluster column
• vaf.col.names: names of V AF columns
• sum.p: min probability that a CCF estimate for a clone in a sample is non-negative in

an accepted clonal ordering
• alpha: alpha level, or [1 - (confidence level)] for CCF estimate of a clone

Mapping driver events onto the trees

If the previous step succeeds and gives you a tree or several trees (congrats!), we can next
map some driver events onto the tree to make sure they will be visualized later. For AML1
case, column is.driver indicates if the variant is a (potential) driver event. We will use the
gene name in column gene to annotate the variants in the tree.

y <- transfer.events.to.consensus.trees(y,
x[x$is.driver,],
cluster.col.name = 'cluster',
event.col.name = 'gene')

10

Converting node-based trees to branch-based trees

ClonEvol can plot both node-based tree (each clone is a node), or branch-based tree (each
branch represents the evolution of a clone from its parental clone, and each node represents a
point where the clone is established/founded). Before we can draw the latter tree, we need
to prepare it.

y <- convert.consensus.tree.clone.to.branch(y, branch.scale = 'sqrt')

Where are trees stored?

Consensus trees are stored in ymatchedmerged.trees. This is a list of data frames, each
describing an inferred tree with various annotations, including CCF estimates and graphical
parameters. The trees are ranked by the probability that sum rule is not violated, hence
ymatchedmerged.trees[[1]] is the best scoring tree. Several important columns include:

• lab: labels of the clones, matching with the cluster labels.
• parent: the parent of the clones in the tree
• sample.with.nonzero.cell.frac.ci: samples where clones are estimated to have positive

CCF

The trees can be further manipulated using R, or visualized as follows.

Step 5: Visualizing the results

Plotting multiple plots and trees together

Now it is exciting time, visualzing the clonal evolution models. Let’s run the following
command to plot the variant clusters, the bell plots, and the clonal evolution trees.

plot.clonal.models(y,
box plot parameters
box.plot = TRUE,
fancy.boxplot = TRUE,
fancy.variant.boxplot.highlight = 'is.driver',
fancy.variant.boxplot.highlight.shape = 21,
fancy.variant.boxplot.highlight.fill.color = 'red',
fancy.variant.boxplot.highlight.color = 'black',
fancy.variant.boxplot.highlight.note.col.name = 'gene',
fancy.variant.boxplot.highlight.note.color = 'blue',
fancy.variant.boxplot.highlight.note.size = 2,

11

fancy.variant.boxplot.jitter.alpha = 1,
fancy.variant.boxplot.jitter.center.color = 'grey50',
fancy.variant.boxplot.base_size = 12,
fancy.variant.boxplot.plot.margin = 1,
fancy.variant.boxplot.vaf.suffix = '.VAF',
bell plot parameters
clone.shape = 'bell',
bell.event = TRUE,
bell.event.label.color = 'blue',
bell.event.label.angle = 60,
clone.time.step.scale = 1,
bell.curve.step = 2,
node-based consensus tree parameters
merged.tree.plot = TRUE,
tree.node.label.split.character = NULL,
tree.node.shape = 'circle',
tree.node.size = 30,
tree.node.text.size = 0.5,
merged.tree.node.size.scale = 1.25,
merged.tree.node.text.size.scale = 2.5,
merged.tree.cell.frac.ci = FALSE,
branch-based consensus tree parameters
merged.tree.clone.as.branch = TRUE,
mtcab.event.sep.char = ',',
mtcab.branch.text.size = 1,
mtcab.branch.width = 0.75,
mtcab.node.size = 3,
mtcab.node.label.size = 1,
mtcab.node.text.size = 1.5,
cellular population parameters
cell.plot = TRUE,
num.cells = 100,
cell.border.size = 0.25,
cell.border.color = 'black',
clone.grouping = 'horizontal',
#meta-parameters
scale.monoclonal.cell.frac = TRUE,
show.score = FALSE,
cell.frac.ci = TRUE,
disable.cell.frac = FALSE,
output figure parameters
out.dir = 'output',
out.format = 'pdf',
overwrite.output = TRUE,

12

width = 8,
height = 4,
vector of width scales for each panel from left to right
panel.widths = c(3,4,2,4,2))

The output should look like Figure 3:

Figure 3: ClonEvol infers and visualizes clonal evolution in relapsed myeloid leukemia.

Plotting trees

If you want to plot only the trees, run this:

pdf('trees.pdf', width = 3, height = 5, useDingbats = FALSE)
plot.all.trees.clone.as.branch(y, branch.width = 0.5,

node.size = 1, node.label.size = 0.5)
dev.off()

Visualizing trees predicted by other tools

In order to visualize trees predicted by other tools, we need to prepare two files:

1. variants.tsv: similar to ClonEvol input, with clusters assigned by other tools
2. tree.tsv: predicted tree, consisting of:

13

a. at least 3 columns: clone, parent, sample.with.nonzero.cell.frac.ci
b. additional columns are: colors, events

Fist, read the tree and variant list from files:

y = import.tree('tree.tsv', 'variants.tsv')

Then, you can prepare annotated branch-based tree with branch length scaled to the number
of clonal marker variants of the clones

y = convert.consensus.tree.clone.to.branch(y, branch.scale = 'sqrt')

You can then also map driver events onto the tree (if the variant file you prepared has ‘cluster’,
‘is.driver’, and ‘gene’ column):

y <- transfer.events.to.consensus.trees(y,
y$variants[y$variants$is.driver,],
cluster.col.name = 'cluster',
event.col.name = 'gene')

Now plot the tree with this:

pdf('imported-tree.pdf', width=3, height=5, useDingbats=F)
plot.all.trees.clone.as.branch(y, branch.width = 0.5,

node.size = 1, node.label.size = 0.5)
dev.off()

How to obtain the best visualizations?

ClonEvol provides default values for most parameters, and in many cases it guess the best
value for the parameters for the visualizations. However, in many cases, manual intervention
is required to achieve the best visualization.
Bell plots
The bell plots mimic the fishplot (Ding et al. 2012) which as a great way to present clonal
dynamics over time. ClonEvol adapts the fishplot and created a simpler visualization (aka.
the bell plot) to visualize clonal evolution of a single sample. The shape of the bell is
controlled by several parameters in plot.clonal.models function.

• bell.curve.step: vertical distance between the end point of clone bell curve, and its mid
point. Increasing this value will make the curve steeper. If it is set to equal zero, thre
will give no curve in the bell plot

14

• clone.time.step.scale: scaling factor for distance between the tips of the bell representing
parental clone and subclones

Due to the complex clonal architechture and evolution, sometime ClonEvol places the tip
of a subclone’s bell outside of the parental clone’s bell. To fix this, decrease bell.curve.step
and/or increase clone.time.step.scale until a reasonable good looking bell plot is generated.
Sphere of cells
Sphere of cells is rendered partially by using the parkcircles package (https://github.com/
mbedward/packcircles). ClonEvol provides several parameters to control the appearance
of the subpopulation of cells drawn in a sphere of cells in the plot.clonal.models function,
including:

• num.cells: total number of cells to draw (default = 100)
• cell.border.size: the size of border (“cell wall”) of the cells (default = 0.1)
• cell.border.color: the color of the border of the cells (default = ‘black’)
• cell.size: size of cell (default = 2)
• clone.grouping: how different clones are arranged (options are ‘random’, ‘horizontal’, or

‘vertical’)

Node-based trees
Node-based trees are rendered using igraph package (Csardi and Nepusz 2006). In order to
achieve the best visualization, adjust the following parameters in the plot.clonal.models
function.

• merged.tree.node.size.scale: the scaling of the size of the node (default value = 0.5)
• merged.tree.node.text.size.scale: the scaling of the size of the node label/annotation

(default value = 1)

Branch-based trees
Branch-based trees are rendered using a modified version of the trees package (https://github.
com/hdng/trees forked from https://github.com/johnbaums/trees). The branch-based trees
are sometimes prefered as it is easier to scale the branch lengths to the number of marker
variants of the corresponding clones and map the driver events onto the branches. Several
important parameters that control the appearance of the branch-based trees, sometime
required to be fine tuned to achive the best tree visualization.

• mtcab.tree.rotation.angle: rotation angle of the tree (default = 180, top-down)
• mtcab.tree.text.angle: angle of the text (default = 0). When tree is rotated, text

sometimes need to be rorated too.
• mtcab.branch.angle: the angle to draw a branch from a clone (default = 15).
• mtcab.branch.width: width of the branch (default = 1),

15

https://github.com/mbedward/packcircles
https://github.com/mbedward/packcircles
https://github.com/hdng/trees
https://github.com/hdng/trees
https://github.com/johnbaums/trees

• mtcab.branch.text.size: text size of the events mapped onto the branches (default =
0.3)

• mtcab.node.size: size of clone nodes (default = 3)
• mtcab.node.label.size: clone label text size (default = 0.75),
• mtcab.node.text.size: sample label text size (default = 0.5)
• mtcab.event.sep.char: the character that separate events in the event string (default =

“,”). Mutliple events will be plot on different lines along the branches.
• mtcab.show.event: show driver events on branches (default = TRUE)

Putting all together in a sinlge plot
The function plot.clonal.models plot all of the above plots, plus the variant jitter/box/violin
plots in a single page. Therefore, arranging the plots in panels is also important to achieve
the best results. This can be controlled by panel.widths parameter, a vector of the width
scales for each panel.

Step 6: Interpretating the results

Clonal mixture of individual samples

ClonEvol estimates the confidence interval (CI) of the CCF of the clones in the samples and
presents the CI alongside the visualizations (including the bell plots and trees). Only clones
with positive cellular fractions, ie. there exists some cell of these clones, defined as having a
high probability that their CCF is positive (see alpha parameter of infer.clonal.models
function).

ClonEvol’s trees

ClonEvol annotates the clones in the trees with the samples where the clones are identified
to have non-zero cellular fraction. For example, if a clonal mixture of sample A contains
10% clone 1, 50% clone 3, and 40% clone 5, then sample A will appear in the annotation of
clones 1, 3, and 5. A star * next to the sample name indicates that the clone is one of the
founding clones of the sample, identified as the first clones with non-zero cellular fractions
when traversing the tree top-down and breath-first.

Clonal seedings between samples

Clonal seeding occurs when one or more cells (homogenous, ie. monoclonal or heteregenuous,
ie. polyclonal) move away from a tumor site, land in a distant location in the same of different
organs, survive and establish their populations and a new tumor. To understand clonal
seedings, in an ideal situation, those clones that establish the first populations of cancer cells
at the distant location must be identified. Given a site is presented by a sample, ClonEvol

16

calls those clones the founding clones of the sample (annotated with a * in the tree, see
above).
When two samples harbor the same clones with non-zero CCF , those clones could indicate
the two samples seed each other or they were both seeded by another samples unsequenced.

Session Info

ClonEvol depends on several packages, including ggplot2 and igraph. Sometimes backward
compatibility is hard to maintained in newer version of packages. ClonEvol itself has changed
a lot since its intitial version as well and some old code might not work well using the
current version. If a strange error occurs, check if you have similar versions of the packages
(below), browse the past issues and Q/As (https://github.com/hdng/clonevol/issues), or
create a new issue (https://github.com/hdng/clonevol/issues) and (don’t forget to) attach
some reproducible code and data.

R version 3.2.2 (2015-08-14)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu precise (12.04.5 LTS)

attached base packages:
[1] grid stats graphics grDevices utils datasets methods
[8] base

other attached packages:
[1] trees_0.1.3.9000 igraph_1.0.1 packcircles_0.2.0 gridBase_0.4-7
[5] gridExtra_0.9.1 ggplot2_2.2.1 clonevol_0.99

loaded via a namespace (and not attached):
[1] Rcpp_0.12.10 plyr_1.8.4 gtable_0.1.2 magrittr_1.5
[5] scales_0.4.1 rlang_0.1 lazyeval_0.2.0 labeling_0.2
[9] tools_3.2.2 munsell_0.4.2 colorspace_1.2-4 tibble_1.3.1

References

Csardi, Gabor, and Tamas Nepusz. 2006. “The Igraph Software Package for Complex
Network Research.” InterJournal, Complex Systems 1695 (5): 1–9.
Ding, Li, Timothy J. Ley, David E. Larson, Christopher A. Miller, Daniel C. Koboldt,
John S. Welch, Julie K. Ritchey, et al. 2012. “Clonal Evolution in Relapsed Acute
Myeloid Leukaemia Revealed by Whole-Genome Sequencing.” Nature 481 (7382): 506–10.
doi:10.1038/nature10738.

17

https://github.com/hdng/clonevol/issues
https://github.com/hdng/clonevol/issues
http://dx.doi.org/10.1038/nature10738

Miller, Christopher A., Brian S. White, Nathan D. Dees, Malachi Griffith, John S. Welch,
Obi L. Griffith, Ravi Vij, et al. 2014. “SciClone: inferring Clonal Architecture and Tracking
the Spatial and Temporal Patterns of Tumor Evolution.” PLoS Computational Biology 10
(8): e1003665. doi:10.1371/journal.pcbi.1003665.
Roth, Andrew, Jaswinder Khattra, Damian Yap, Adrian Wan, Emma Laks, Justina Biele,
Gavin Ha, Samuel Aparicio, Alexandre Bouchard-Côté, and Sohrab P. Shah. 2014. “PyClone:
statistical Inference of Clonal Population Structure in Cancer.” Nature Methods 11 (4):
396–98. doi:10.1038/nmeth.2883.

18

http://dx.doi.org/10.1371/journal.pcbi.1003665
http://dx.doi.org/10.1038/nmeth.2883

	What is ClonEvol?
	Installation
	Clonal evolution analysis workflow
	Step 1: Preparing variants for clonal evolution inference
	Step 2: Clustering variants
	Step 3: Evaluating the variant clustering results
	Loading ClonEvol and AML1 clustering data
	Preparing clustering data
	Choosing colors for the clones
	Visualizing the variant clusters
	Plotting pairwise VAFs or CCFs across samples
	Plotting mean/median of clusters across samples (cluster flow)

	Step 4: Clonal ordering with ClonEvol
	Inferring clonal evolution trees
	Mapping driver events onto the trees
	Converting node-based trees to branch-based trees
	Where are trees stored?

	Step 5: Visualizing the results
	Plotting multiple plots and trees together
	Plotting trees
	Visualizing trees predicted by other tools
	How to obtain the best visualizations?

	Step 6: Interpretating the results
	Clonal mixture of individual samples
	ClonEvol's trees
	Clonal seedings between samples

	Session Info
	References

