Paper Review:

Feature Pyramid Networks for
Object Detection

Hyunseung Jeon
School of CSE, Kyungpook Nat’l Univ.

hyunseung.jeon@knu.ac.kr

Hyunseung Jeon



Introduction

* Recognizing objects at vastly different scales is a fundamental challenge in computer vision.
« Scale-Invariant matters!

» Especially, detecting small objects...
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Previous Approaches
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(a) Featurized image pyramid

» The principle advantage of featurizing each level of an image pyramid is that it produces a
multi-scale feature representation in which all levels are semantically strong, including the
high-resolution levels.

» Features are computed on each of the image scales independently, which is slow.
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Previous Approaches

(a) Featurized image pyramid

» Inference time increases considerably, making this approach impractical for real
applications.

* Training deep networks end-to-end on an image pyramid is infeasible in terms of memory,
and so, if exploited, image pyramids are used only at test time.
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Previous Approaches

E > predict

(b) Single feature map

Used in YOLO v1
ConvNets are also more robust to variance in scale.
But even with this robustness, pyramids are still needed to get the most accurate results.

Uses only single scale features - introduces large semantic gaps caused by different depths.
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Previous Approaches
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(c) Pyramidal feature hierarchy

 Usedin SSD

« SSD-style pyramid would reuse the multi-scale feature maps from different layers computed
in the forward pass and thus come free of cost.

« It misses the opportunity to reuse the higher-resolution maps of the feature hierarchy.

* “Only bottom-up pathway”, low performance on small object detection.
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Goals

« Our goalis to leverage a ConvNet’s pyramidal feature hierarchy, which has semantics from
low to high levels, and build a feature pyramid with high-level semantics throughout.

* The goal of this paper is to naturally leverage the pyramidal shape of a ConvNet’s feature
hierarchy while creating a feature pyramid that has strong semantics at all scales.

« “creating a feature pyramid” - FPN is feature detector, not a single model that performs
object detection.
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Feature Pyramid Network

« Low-resolution has semantically strong features.
 High-resolution has semantically weak features.

« To achieve this goal, we rely on an architecture that combines low-resolution, semantically
strong features with high-resolution, semantically weak features via a top-down pathway

and lateral connection.

« The construction of our pyramid involves a bottom-up pathway, a top-down pathway, and
lateral connections, as introduced in the following.

 Lateral connection = Skip-connection
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Feature Pyramid Network
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the top-down pathway, merged by addition.
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Bottom-up pathway
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Bottom-up pathway

« The bottom-up pathway is the feed-forward computation of the backbone ConvNet, which
computes a feature hierarchy consisting of feature maps at several scales with a scaling step
of 2.

« There are often many layers producing output maps of the same size and we say these
layers are in the same network stage.

« We choose the output of the last layer of each stage as our reference set of feature maps,
which we will enrich to create our pyramid.

 This choice is natural since the deepest layer of each stage should have the strongest
features.
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Top-down pathway and lateral connections
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Top-down pathway and lateral connections

« The top-down pathway hallucinates higher resolution features by upsampling spatially
coarser, but semantically stronger, feature maps from higher pyramid levels.

« These features are then enhanced with features from the bottom-up pathway via lateral
connections.

« Each lateral connection merges feature maps of the same spatial size from the bottom-up
pathway and the top-down pathway.
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Top-down pathway and lateral connections
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Input: 2 x 2 Output: 4 x 4

« We upsample the spatial resolution by a factor of 2 (using nearest neighbor upsampling for
simplicity).

* The upsampled map is then merged with the corresponding bottom-up map (which
undergoes a 1x1 convolutional layer to reduce channel dimensions) by element-wise
addition.
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Top-down pathway and lateral connections

« The top-down pathway hallucinates higher resolution features by upsampling spatially
coarser, but semantically stronger, feature maps from higher pyramid levels.

« These features are then enhanced with features from the bottom-up pathway via lateral
connections.

« Each lateral connection merges feature maps of the same spatial size from the bottom-up
pathway and the top-down pathway.
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Applications

» Our method is a generic solution for building feature pyramids inside deep ConvNets.
* RPN for bounding box proposal generation
» Fast R-CNN for object detection
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Feature Pyramid Networks for RPN

Classification Result
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Bounding Box Regression Result
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Feature Pyramid Networks for RPN

ResNet
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Feature Pyramid Networks for RPN

- We adapt RPN by replacing the single-scale feature map with our FPN.

* This is realized by a 3x3 convolutional layer followed by two sibling 1x1 convolutions for
classification and regression, which we refer to as a network head.

» The parameters of the heads are shared across all feature pyramid levels.

« We attach a head of the same design (3x3 conv and two sibling 1x1 convs) to each level on
our feature pyramid.
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Feature Pyramid Networks for Fast R-CNN
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Feature Pyramid Networks for Fast R-CNN

« To use it with our FPN, we need to assign Rols of different scales to the pyramid levels.

« We view our feature pyramid as if it were produced from an image pyramid. Thus we can
adapt the assignment strategy of region-based detectors in the case when they are run on
Image pyramids.

« We attach predictor heads (in Fast R-CNN the heads are class-specific classifiers and
bounding box regressors) to all Rols of all levels.

« The heads all share parameters, regardless of their levels.
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Experiments on Object Detection

« COCO detection dataset
 Trained on trainval35k

 Evaluated onminival
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Experiments on Object Detection

RPN feature | # anchors | lateral?  top-down? | AR'™0 | ARYF | AR AR:J‘:“ ARl.' k
{a) baseline on conv4 4 47k 36.1 48.3 32.0 587 (2.2
(b} baseline on convs 5 12k 36.3 44,9 253 35.5 4.2
(c) FPN {P} 200k v v 44.0 563 | 449 634 0662
Ablation experiments follow:

{d) bottom-up pyramid 1P} 200k v 374 495 | 305 599  68.0
{e) top-down pyramid, w/o lateral 1P} 200k v 345 46.1 26.5 574 647
{1y only hnest level o 750k ¥ oy 34 Al.3 351 509 67.6

Table 1. Bounding box proposal results using RPN [ 24, evaluated on the COCO minival set. All models are trained on t rainval 35k.

The columns “lateral™ and “top-down™ denote the presence of lateral and top-down connections, respectively. The column “feature” denotes
the feature maps on which the heads are attached. All results are based on ResNet-50 and share the same hyper-parameters.

* Region proposal(Bounding box proposal) with RPN
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Experiments on Object Detection

Fast R-CNN proposals feature | head | lateral? top-down? | AP@0.5 | AP | AP, AP, AP
{a) baseline on conv4 RPN, {F.} | €4 | convs 54.7 319 | 157 365 455
{b) baseline on conv5 RPN, { Py } ' 2fe 529 288|119 324 434
{c) FPN RPN, { P} | {FPi} 2fe v v 569 | 339178 377 458
Ablation experiments follow:

{d) bottom-up pyramid RPN, {F.} | {FP} 2fe v 449 | 249 (109 244 385
{e) top-down pyramid, w/o lateral RPN, {F.} | {FP} 2fe v 540 | 313 [ 133 352 453
(f) only finest level RPN, { P } Py 2fe v v 56.3 334 | 173 373 456

Table 2. Object detection results using Fast R-CNN [ 1] on a fived set of proposals (RPN, { P}, Table 1(c)), evaluated on the COCO
miniwval set. Models are trained on the trainval 35k set. All results are based on ResNet-30 and share the same hyper-parameters.

* Object Detection with Fast R-CNN
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Experiments on Object Detection

Faster R-CNN proposals feature | head | lateral? top-down? | AP@E0.5 | AP | AP: AP AP
{*) baseline from He er al. [I:-]Jr RPN, (4 () convs 47.3 26.3 - - -

{a) baseline on convd RPN, 4 4 convs 53.1 316 132 356 47.1
{b) baseline on conv3 RPN, C'5 Cs 2fc 51.7 28.0 1 96 319 431
(c) FPN RPN, {F.} | {FP.} 2fe v v 56.9 339 | 17.8 37.7 458

Table 3. Object detection results using Faster R-CNN | 2Y] evaluated on the COCO minival set. The backbone network for RPN are
consistent with Fast R-CNN. Models are trained on the t rainval 35k set and use ResNet-50. T Provided by authors of [ 6].

» Object Detection with Faster R-CNN
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